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A linear stability analysis is presented of both hydraulically smooth and transitional 
flows over an erodible bed. The present theory is developed to account for the 
formation of ripples. It is essentially an extension of the theory of Richards (1980) 
to include the effect, of viscosity upon the bed wave stability. The theory takes into 
consideration that the formation of ripples does not depend on flow depths, and that 
only the bed-load transport is involved in the formation of ripples. The effect of 
gravity is included in the analysis through the local inclination of the wavy bed 
surface. The results show that the bed is unstable (i.e. ripples exist) when the grain 
Reynolds number is less than a certain value. The limiting values of the grain 
Reynolds number for ripple existence obtained through present analysis are found 
to  be in good agreement with observations. 

1. Introduction 
Prediction of flow over an erodible bed covered by bed waves is one of the most 

significant problems in hydraulic engineering. The flow depends on the bed form, while 
the bed form depends on the flow : there exists a complex feedback mechanism between 
the two. More accurate predictions of flow over erodible beds therefore depend on 
more accurate information on the mechanics of bed form. Ripples are one of the most 
encountered bed forms and therefore deserve special attention. The problem of the 
initiation and development of ripples has not been solved in a generally accepted 
manner, and there are various theories trying to explain the formation of these bed 
waves. Richards (1980) broadly divided these theories into stability theories and 
theories involving the propagation of ripples downstream from an initial disturbance. 
A detailed account of these theories has been given in Richards (1980). 

For a comprehensive review of the subject the reader is referred to any one of the 
excellent review papcrs by Reynolds (1976), Kennedy (1980) and Engelund & F r e d s ~ e  
(1982). 

Richards (1980) presented a stability theory to account for the occurrence of ripples 
and dunes. The theory proposed by Richards successfully predicts the occurrence of 
two separate modes of instability, with wavelengths related to the roughness of the 
bed and the depth of the flow. It postulates that the former mode corresponds to 
the formation of ripples and the latter to that of dunes. It should be noted that, 
in the aforementioned theory, the bed is assumed to be hydraulically rough. 

Engelund & Freds~e  (1982), in their review paper, suggest that it would be of 
interest to  carry out an analysis similar to that of Richards for hydraulically smooth 
bed, pointing out that ripples are usually associated with a smooth bed. I n  fact, Mantz 
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(1978) observed that ripples developed for grain Reynolds number d u J u  - 0.1, which 
clearly indicates that  the bed in his experiments behaved as a hydraulically smooth 
boundary (here d is the grain size, u* the shear velocity and u the kinematic viscosity). 
On the other hand, some observations show that ripples can be observed up to the 
values of grain Reynolds number of 2&30 (see figure 6),  which suggests that ripples 
are associated not only with a hydraulically smooth bed but also with a transitional 
bed. 

Quite recently, Hayashi & Onishi (1983) have presented a bed-form stability 
analysis with the aim of developing a unified theory that will cover the entire range 
of sand waves from ripples to  antidunes. The theory appears to predict three different 
groups of dominant wavelengths corresponding to  ripples, dunes and antidunes. 
However, as far as the ripple formation is concerned, their results suffer from the fact 
that the theory does not take into consideration the fact that ripples are associated 
with hydraulically smooth and transitional beds. 

In  an earlier study, the authors (Sumer, Bakioglu & Bulutoglu 1982) made an 
attempt to work out a linear stability analysis for the smooth bed case to explain 
the occurrence of ripples observed by Mantz; and indeed the stability analysis 
predicted the occurrence of bed instability, giving the preferred initial length of bed 
waves to be proportional to  the viscous lengthscale u/u*. 

The present paper presents a linear stability theory of a plane erodible bed to 
account for the occurrence of ripples in a more general case.t The theory takes into 
consideration the following facts, which are the reported features of ripple formation : 
(a) the bed usually behaves as a transitional boundary but i t  may also behave as a 
hydraulically smooth one if the grain Reynolds number is sufficiently small; ( b )  the 
formation of ripples does not depend on flow depths; ( c )  only the bed-load transport 
of sediment is involved in ripple formation; and (d )  gravitational force is important, 
as it impedes grain motion up stoss slopes and aids i t  down lee slopes. The 'stability ' 
part of the present theory, including the sediment analysis, follows the line of 
Richards (1980). Although the flow model adopted here is different from that of 
Richards, the present theory is principally an extension of that of Richards to include 
the viscous lengthscale u / u *  by assuming flow over smooth and transitional 
boundaries. The result is that  the bed is unstable (i.e. ripples will exist) when the grain 
Reynolds number du* /v  is less than a certain value. 

In  $ 2  the flow over a small-amplitude wavy bed is analysed. By relating the 
sediment transport to the wall shear stress obtained through the flow analysis, the 
stability of the bed wave is examined in $3.  The results are presented and discussed 
in $4. 

2. Flow over a small-amplitude wavy bed 

is given by 

where a is the amplitude, k is the wavenumber of the bed and its growth rate. In  
order t>o det'ermine whebher the bed is stable, i t  is necessary to  reveal the character 
of the flow past) the bed having small perturbabions and to associate it with the 
t>ransport of sediment. I n  fact', the latter information, along wit>h bhe continuity 
equation of sediment transport, will enable us to  determine the evolution of the 
perburbed bed. 

t Earlier results of this study have been presented at the Second International Symposium on 
River Sedimentation held in Kanjing, China (Sumer & Bakioglu 1983). 

Suppose a plane erodible bed is slightly perturbed so that the bed displacement 

(1) h, = aei(kr--at) 
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We assume that the time scale of the flow development over the bed form is small 
compared with that of the bed-form development.? The latter suggests that  the flow 
over the perturbed bed can be assumed to be steady a t  times that are short compared 
with the development time of the bed form. Therefore we consider a steady flow over 
a small-amplitude solid wavy boundary. Since the formation of ripples does not 
depend on flow depths (see §1), we further consider the flow to take place in the 
half-space y > 0, where y is the distance from the boundary. 

Thomas Hanratty and his group a t  the University of Illinois (Zilker, Cook & 
Hanratty 1977; Thorsness, Morrisroe & Hanratty 1978) have carried out a series of 
experiments on shear-stress distributions in flows over solid wavy walls. They have 
also developed and convincingly verified a linearized model for smooth, wavy- 
boundary flow. Their model appears to be applicable for all bed-form amplitudes 
smaller than those creating flow separation. A detailed account of the model is given 
in Thorsness et al. (1978), while Zilker et al. (1977) present the results of the 
experiments. 

It is the model of Thorsness et al. that the present study adopts to determine the 
steady flow over a small-amplitude wavy wall. I n  this study this model is extended 
to include also the case when the wall falls into the transitional-boundary category; 
this is because ripples are associated not only with a smooth bed but also with a 
transitional bed (see 3 1). For convenience, the Thorsness et al. theory, along with the 
present extension, will be summarized here very briefly. 

We use the boundary-layer coordinate system shown in figure 1 .  The linearized 
metrical coefficients of this coordinate system are 

h, = 1+ak2yeikx, h, = I. (2) 

For convenience, in the preceding equation and (only) throughout this section, 
lengths are made dimensionless with respect to the ratio u/u* of the kinematic 
viscosity to the shear velocity, and velocities are made dimensionless with respect 
to the shear velocity u* = (?,/p): (where 7, is the unperturbed wall shear stress). 

The stream function, defined by 

is written as 

9 = j” ~ ( y )  dy + a ~ ( y )  eikx, 
0 

t The validity of this assumption can be readily seen from Richards’ (1980) calculations. 

(4) 
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where u and v are the velocity components in the x- and y-directions respectively and 
0 is the unperturbed velocity distribution. The first term on the right-hand side of 
(4) corresponds to the unperturbed flow and the last term to the wave-induced flow. 

Substituting (4) into the vorticity equation gives (to the first order in a )  the 
following equation for E': 

ik[ g(F"- k2F)  - p F +  k2i!72] = FIV - 2 k 2 F  + k4F+ 2k2rr" - k4 n+ R, 
where R = ik3fx, - ik3fyy + 3k2fky + ik(tkx- PLY) + k28,, + tGy. 

Here rii = fij + atii eikx, in which F i j  is the unperturbed Reynolds stress and atij eikx 
the wave-induced part. 

(5) 

(6) 

The boundary conditions are 

F = 0 ,  F = O  a t  y = O ,  ( 7 )  

F = 0, F = a t  largey. (8) 

The wall shear stress 7, and the wall pressure p ,  can be obtained from the solution 
of (5), subject to the boundary conditions in (7) and (S), since a t  y = 0 

7, = 7, + a F ( 0 )  eiks, 

p ,  = -- [F"(o) + k2 U'(0)l eikx. 

(9) 

(10) 
ia 
k 

The calculation of the wave-induced flow depends on how the Reynolds stress is 
modelled. Thorsness et al. (1978) found an approach used by Loyd, Moffat & Kays 
(1970) to be useful for this purpose. Loyd et al. neglected the effect of the normal 
Reynolds stresses and used an eddy-viscosity concept to model rsy  : 

where vT is the eddy viscosity and exy the xy-component of the rate-of-strain tensor, 
which is given by 

2exy = U ' + a ( k 2 F - k 2 U + F ) e i k x .  (13) 

1, = ~ y ~ l - e x p  ( - y & / ~ ) ] ,  (14) 

Furthermore, they adopted the van Driest equation for the mixing length I, : 

where K is the von Karman constant and A the van Driest damping factor, which, 
in the present context, is given by 

ak,&$, i k x  
A = A +  e .  

1 + ikk,, 

Here is the unperturbed value of A ;  k ,  is a parameter representing the influcnce 
of the pressure gradient on A ,  the pressure gradient being caused by the wavy 
geometry of the bed; and kLP is another parameter introducing the fact that the 
response of A to the wall quantities is not instantaneous. 

I n  the present study, the expression for vT is modified to represent the influence 
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FIGURE 2. Unperturbed velocity distributions obtained through (18). K was taken as 0.41 and 
as 25. ( a )  o/u* = yu,/v, velocity distribution in the viscous sublayer when the boundary is 
hydraulically smooth; ( b )  u / u *  = (l/K) In (yu*/v)+5.1, that in the logarithmic layer when the 
boundary is hydraulically smooth; (c) D/u* = (1/~) In (30 z l k , ) ,  that  in the logarithmic layer when 
the boundary is completely rough, in which z = y + Ay. 

of surface roughness as far as the transitional-boundary case is concerned. Following 
Ccbeci & Chang (1978), we rewrite 1, in (14) as 

1, = ~ ( y  + Ay) { 1 - exp [ - (y + Ay) & / A ] }  . (16) 

This expression is based on Rotta's (1962) model, which recognizes that the velocity 
profiles for smooth and rough walls can be similar, provided that the coordinates are 
displaced. Cebeci & Chang give the coordinate displacement Ay as 

b y  = 0 . 9 [ k i - k s  exp ( - + k , ) ] ,  (17) 

which relates Ay to  the Nikuradse equivalent sand roughness k,  of the wall. Cebeci 
& Chang report that the expression in (17) is valid for 4.535 < k,  < 2000, with the 
lower limit corresponding to the upper bound for a hydraulically smooth boundary. 

For the calculations, a van Driest mixing-length equation was used to calculate 
the unperturbed velocity distribution 

U = 2  (18) 
- dY 

l + { l + 4 r B ( y + A y ) 2 [ l - e x p ( - ~ ) ~ ~ '  

Although this expression is a rather cumbersome one, its utilization with the aid of 
simple numerical integration techniques does not lead to any objectionable time loss. 
The velocity distributions obtained through (18) are illustrated in figure 2 for various 
values of k,u,.v. As seen from the figure : ( a )  gtends  to the linear distribution = y 
for small values of y and to the logarithmic distribution 0 = ( 1 / ~ )  In y +  5.1 for large 
values of y for hydraulically smooth beds; and ( b )  i t  tends to the logarithmic 
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distribution u= ( 1 / ~ )  In (30 z / k s )  for large values of y for rough beds in which 
z = y+Ay (Monin & Yaglom 1971). 

Other input quantities for the calculations are K ,  x, k1 and kLp. The von Karman 
constant K was taken as 0.41. As to the van Driest damping factor A, Cebeci & Chang 
(1978) report that  the available experimental data ( k ,  ranging from 20 to about 2000) 
compare favourably well with their calculations in which they introduce the influence 
of wall roughness through the quantity Ay, keeping the van Driest damping factor 
constant, irrespective of the wall roughness. Following Cebeci & Chang, the unper- 
turbed damping factor was kept constant throughout the calculations, taking the 
usual value A= 25. As far as the parameters k ,  and k,, are concerned, they are 
introduced in the analysis, as they enable us to handle the damping factor A in the 
case of a wavy boundary. Hence it appears that  they should have no dependence 
upon the category of the wall. So, for the calculations, the values of these parameters 
can be taken as those recommended for smooth walls. Thorsness et al. (1978) give 
a detailed account of the influence of these parameters on the final results. On the 
basis of comparison of their results (with various combinations of k ,  and kLp) with 
the available data, they recommend k ,  = -60 and k,, = 3000 (see also Zilkcr et al. 
1977). The latter values were employed for the present calculations, irrespective of 
the boundary roughness. The fact that  the present results tend to that of Richards’ 
(1980) rough model (see $4) as k,  approaches the upper bound for transitional 
boundary reveals the validity of our assumption that the values of k ,  and kLP 
recommended for smooth walls can be used equally well for rough boundaries. 

Numerical solutions to  ( 5 )  were obtained through a finite-difference technique. The 
fourth-order differential equation and also the boundary conditions are approximated 
by finite-difference equations, so that derivatives are expressed up to fifth- or 
sixth-order central differences a t  pivotal points. Also difference correction terms, 
beginning with fifth- or sixth-order central differences, were taken into account to 
improve the solution (Fox 1957). 

3. Sediment transport and stability analysis 
3.1. Sediment transport formula 

I n  the present context, we consider the sediment transport as bed load, neglecting 
any suspended load on the ground that only the bed-load transport mode is involved 
in ripple formation (see $1). We adopt Bagnold’s (1956) bed-load formula for this 
purpose. It relates the rate of work done in moving the bed load along the bed against 
total resistance to the available energy in the flow where the bed-load transport takes 
place. This gives 

(7, - 7 C J  7 i  
qb= (s-1)gpt (c tan$+tana)cosa’  

where qb is the bed-load discharge, a the local inclination of the perturbed bed surface 
to the horizontal, $ the friction angle, eb an efficiency factor of order 0.1, s the specific 
gravity of grains, g the acceleration due to gravity and T,, the critical shear stress. 
The coefficient B in (19) is a function of grain Reynolds number, which tends 
asymptotically towards the value 8.5 as the grain Reynolds number increases (Yalin, 
1972, p. 119). However, the explicit form of this function is not needed for the present 
purpose. 

The factor c in (19) does not appear in the original work of Bagnold. The necessity 
for its introduction, as well as the discussion of its magnitude, is clarified below. 
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By definition, the bed-load motion takes place in the so-called bed layer immediately 
above the bed, and the thickness e of the bed layer is proportional to the grain size : 
e - d. For a bed of local inclination a, the resisting force opposing the bed-load motion 
is the sum of ( a )  the gravity force, (b)  the friction force and (c) other resisting forces 
which are of minor importance: Let C, denote the bed concentration by weight. The 
gravity-induced resisting force per unit area of the bed is then C,, E sin a. As to the 
friction force, it is provided by the normal forces exerted by the bed-load particles 
across a surface of the non-moving bed. However, some of the bed-load particles move 
in short jumps. This, on the average, will cause the normal load on the non-moving 
bed to be reduced: this means that an average reduction in the friction force should 
be expected. Thus the normal force per unit area of the bed surface is cC,, e cos a and 
then the friction force is cC, E cos a tan $, where the factor c is included to compensate 
for the latter effect. This factor would be unity if there was no ‘jumping’ mode in 
the bed-load transport, while it would tend to  zero if all the particles of the bed load 
were in ‘jumping’ mode. Therefore c should be in the range 0 < c < 1. To provide 
an estimate for c, we can assume that the friction force generated by the bed-load 
particles which are in contact with the non-moving bed surface can be expressed as 
G,d cosa tan$. Considering that the proportionality e /d  is approximately equal to 
2, it  follows that c x 0.5. Although, owing to the possible interaction between 
particles moving in contact with the bed and those in ‘jumping’ mode, the friction 
force can be expected to be a little higher than C, d cos a tan $, and thus the value 
of c should be correspondingly larger than 0.5, these possible deviations should not 
be significant, and therefore are not considered in the present analysis. 

As has been mentioned in 0 1 ,  gravitational force is important in ripple formation. 
In  this connection, one should note that Bagnold’s formula in its present form (19) 
takes into account the effect of gravitational force through the local inclination of 
the bed. 

3.2.  Stability analysis 

The sediment continuity equation is 

where n is the porosity of the bed. Substituting (1)  and the linearized form of (19) 
into (20), we obtain, to first order in a ,  

U =  Be,P 37,-Tcr . a k ( + 3 k i ) ,  -1 

( s - l ) ( l - n n ) g p ~  2 

where f, is the wave-induced part of the wall shear stress defined by 

and /3 is 
T, = 7, + f w  eikx 

1 p=- 
c t a n $ ’  

The bed is unstable when cri > 0. Here cri is the imaginary part of g. 

4. Results and discussions 
Since the numerical technique of the present study differs from that of Thorsness 

et al. (1978), the present numerical technique was tested against theirs by comparing 
the smooth-boundary results of the present study with the corresponding results in 
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Thorsness et al. As we are interested in the stability of the bed and thus in the wall 
shear stress (21), the wall shear stress calculated through the present technique was 
compared with that of Thorsness et al., and a good agreement was observed (for 
further details see Sumer et al. 1982). As far as the formation of ripples is concerned, 
one of the most significant results associated with the wall shear stress is that i t  
appears to follow the bed perturbation with a phase lag ranging from 25" to 80" for 
t,he wavenumber range of interest of the present study (i.e. for 0.001 < k v / u ,  < 0.1), 
the phase lag decreasing with increasing k v / u ,  (see Thorsness et al. 1978). As to the 
phase lag, although a direct comparison is not possible, the latter findings appear to 
be in qualitative agreement with Richards' (1980) relevant results, where the stress 
maximum was found to be upstream of the crest of the small perturbation to the bed. 

With regards to the case of the bed behaving as a transitional boundary, our 
calculations show that the amplitude of the wave-induced part of the wall shear stress 
somewhat decreases with increasing roughness, the phase lag increasing only slightly. 
For example, for k v / u ,  = 0.02, the non-dimensionalized amplitude 1 f W 1 / ( ? ,  au,/v) 
decreases from 0.185 to 0.115 while the phase lag increases from 39" to 43" as the 
bed changes from a smooth to a rough wall with k,u,/v = 30. Although no clear 
explanation is found for the slight increase in phase lag, the decrease in amplitude 
can be explained as follows. I n  the case of the smooth wall the perturbation in wall 
shear stress is induced by the wavy geometry of the wall; whereas in the case of the 
rough wall there is an additional effect which actually counteracts that  due to the 
wall geometry. This new effect is caused by the wall roughness: the cross-currents 
in the boundary layer are enhanced by the vortex shedding caused by the presence 
of the roughness elements; therefore the fast-moving fluid in the outer layers are 
carried into the neighbourhood of the wall in larger quantities than in the case of 
the smooth wall. This makes the near-wall flow in the rough-boundary case feel the 
waviness of the wall less than in the case of smooth wall. The latter implies that the 
amplitude of the wave-induced part of the wall shear stress should decrease with 
increasing roughness. 

To facilitate comparison with Richards's (1980) rough-model results, the imaginary 
part of the wave-induced wall shear stress fwi is plotted in the form of (fWi/?,)/ak 
against the roughness Reynolds number k,u,/v for various values of kk, in figure 3. 
I n  this figure the results of Richards' work are also plotted, taking the roughness 
length z,, in his model to be &k, (Monin & Yaglom 1971, p. 289). As seen from the 
figure, the present results tend to Richards's a t  k ,  u,/v = 6&70. This result has the 
following two implications. First, the transitional-boundary results of the present 
study tend to the rough case a t  the correct value of k,  u,/v (=  65-70), which is the 
upper bound for transitional boundary, and secondly, the rough-boundary results of 
the present work appear to be in good agreement with Richards' corresponding 
findings. From dimensional considerations it is easy to show that, for a specified value 
of kk,, (7",,/?,)/ak should be a constant times k,u,/v when k,u,/v < 4.5, and i t  
should tend to a constant when k,u,/v > 70. It should be noted that the results 
presented in figure 3 appear to reveal this behaviour. 

As stated in $3.2,  the bed is unstable when the imaginary part of growth rate u 
is positive. From (21) the growth rate of bed perturbation is proportional to 

= &[ fwi Bkv] 

The results showed that, for /3 = 0, the growth rate increases monotonically with 
kvlu, ,  and thus the bed is always unstable, in agreement with Richards's (1980) 

u* ?,au,/v u* ' 
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FIGURE 3. Imaginary part of the wave-induced wall shear stress plotted against the roughness 
Reynolds number k,u, /v .  ---, Richards's (1980) solution for rough bed. (a) kk, = 0.08; ( b )  0.15; 
(c) 0.3; ( d )  0.6; ( e )  1.2. 

corresponding result. (Note that, from (19), i t  can be readily seen that p = 0 
corresponds to that case when the gravity effect is not taken into consideration.) The 
results for varying k,u, /v  are shown in figure 4, where /3 is taken as 3.2, which can 
be considered as an average value for that  parameter, and c = 0.5 and tan $ = 0.63 
(an average value for tan $ ; Bagnold 1973). Figure 5 shows the stability diagram from 
the results plotted in figure 4. As seen from figure 5 ,  there exists an upper limit to 
the existence of instability of the bed; this upper limit is k,u, /v  = 58.5. Since, in the 
present study, the instability of the bed is associated with the occurrence of ripples, 
it can be concluded that above k,u,/v = 58.5, no ripples will exist. 

For flow above a bed where sediment grains are in motion, the problem of how 
to determine the Nikuradse equivalent sand roughness has not been solved in a 
generally accepted manner. Engelund & Hansen (1967, p. 39) report that  an analysis 
they carried out for flows of plane bed (but with sediment in motion) indicated a value 
of k,  = 2.5 d on average. Becchi (1983) reproduces the presently available data on the 
Darcy-Weisbach friction coefficient f for sediment carrying flows with plane beds, 
where (S/f):-2.5 In (Rid) has been plotted as a function of two parameters, namely 
the grain Reynolds number du,/v and a parameter which can easily be converted 
to the Shields parameter u$/g(s-  1 )  d.  Here R is the hydraulic radius. A plot of the 
data (S/f)i-2.5 In (R/d)  versus du,/v for specified values of Shields parameter has 
indeed revealed that the Nikuradse equivalent sand roughness can be taken as 
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FIGURE 5 .  Stability limits to the formation of ripples; ,8 = 3.2. The dashed curve corresponds to 
the fastest-growing wavenumber. k ,  is converted to d by k ,  = 2.5 d. 
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FIGURE 7. Effect of /3 on the stability limits to the formation of ripples. See caption of figure 3. 

k, = 2.5 d for the range of the Shields parameters du,/v and u2,/g(s- I )d  for which 
ripples are observed. 

When converted to the grain Reynolds number using k, = 2.5 d ,  the upper limit 
to ripple existence, i.e. k ,u , / v  = 58.5, is found to be du,/v = 23. This result is in 
remarkable agreement with the experimental information on ripple existence shown 
in figure 6, according to which no ripples have been observed for values of grain 
Reynolds number greater than approximately 25. 

For the reported range of tan$ quoted in Richards (1980), 0.32 < tan$ < 0.75, 
which corresponds to the range 2.5 < p < 6 (taking c = 0.5), the stability diagrams 

Y L M  144 7 
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are shown in figure 7, illustrating the effect of the parameter /3 upon the ripple 
instability. These diagrams show that the upper limit to ripple existence does not 
change significantly with the parameter p ;  in quantitative terms, above 
du, /v  = 1&26 no ripples will exist, which is again in good agreement with the 
experimental information in figure 6. As seen from figure 7, the limiting value of du, /v  
decreases with increasing p. This can be explained as follows. As has been pointed 
out in the preceding paragraph, we have zero ‘gravity effect ’ when /3 = 0; the effect 
of gravity becomes more and more pronounced for increasing /3. In  the case of the 
gravity effect increasing with an increase in p, we need to have a larger wall shear 
stress to enable the erosion-t,ransportdepositjon process in ripple formation to keep 
continuing. As has been noted a t  the beginning of this section, the larger the 
amplitude of the wall shear stress, the smaller the roughness of the bed. This 
implies that the limiting value of k,u,/v for ripple existence should decrease with 
increasing p. 

As we should expect, the present model does not predict the existence of dunes. 
The formation of dunes depends on the flow depth. Furthermore, dunes are produced 
by suspended load perturbations. As the present theory doesnot take into consideration 
these latter effects, we should therefore not expect i t  to account for the existence of 
dunes. 

On the other hand, for a stability theory to account for the transition from ripple 
to dune regimes, flow over fully developed ripples must be modelled ; thus a nonlinear 
theory must be developed, including the effect of flow separation which occurs at the 
crests of mature ripples. 

I n  figures 5 and 7, the dashed curves correspond to the fastest-growing wavenumber 
a t  which the growth rate o attains a maximum positive value. This gives a preferred 
wavelength a t  which one would expect a disturbance to grow. From figure 5 the range 
of the fastest-growing wavenumber for varying du,/v is found to be 
0.0035 < k v / u ,  < 0.037, with k v l u ,  increasing for decreasing du,/v. The latter range 
corresponds to the wavelength range 200 < Lu, /v  < 2000, with Lu , / v  increasing for 
increasing du, /v .  This result has two immediate implications. First, in contrast with 
the earlier ideas (see e.g. Yalin 1972), the ripple length appears not to  scale with the 
grain size d ,  but as a function of grain Reynolds number such that 

Lu, d u  
y = f ( $ )  (24) 

which is in complete agreement with Yalin’s more recent (1977) study.t Secondly, 
the ripple length increases with increasing grain size, which is also in agreement with 
Yalin’s (1977) study and also with Hayashi & Onishi’s (1983) recent stability results. 

However, the wavelength range 200 < h , / v  < 2000 is an order of magnitude too 
small for observed ripples reported in Yalin (1977). Yalin, in this latter work, reports 
that  during the development of ripples, their length can increase by a factor of two 
or so, and he points out that  the development duration can be as long as several days ; 
the values of the ripple lengths plotted in Yalin are those belonging to the fully 
developed ripples, the final lengths of which are expected to have been controlled by 

t On dimensional grounds, Yalin (1977) actually gives L/d = $(du,/v) .  Referring to his earlier 
work (Yalin 1972), he notes that it was not possible to reveal the form of the function $(du,/v)  
by the available ripple data (which were scattered around the value LOOO), and therefor? there was 
no alternative but to represent $(du,/v) by the round value 1000; that is, L/d z 1000. However, 
in his more recent (1977) work, Yalin determines the functional form of $(du,/v)  with the help of 
data obtained through a series of carefully designed experiments. 
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the separated flow over the fully developed wave. Since the present theory is a linear 
theory, and furthermore does not take into account the flow separation, and thus 
represents only the initial stage of ripple development, the preferred wavelengths 
obtained through the present theory should be considered as the initial (but not the 
final) lengths of ripples, and should therefore be small compared with those given in 
Yalin (1977). Freds~re (1982) discusses in some detail the final dimensions and shape 
of ripples and dunes. He points out that the linear stability analyses are only able 
to predict whether bed forms develop or not, and can say almost nothing about the 
final dimensions and shape of the bed forms, supporting our argument above. 

Finally, it  should be pointed out that, although the initial preferred wavelength 
from figure 7 appears to be a function of the parameter /3 as well as du,/v, it  should 
be a function of du,/v alone, since the parameter p itself should be expected to  be 
a function of du,/v. 

5. Conclusions 
The results of the linear stability analysis developed to  account for the formation 

of ripples show that an erodible bed will be unstable (and thus ripples will exist) when 
the grain Reynolds number is less than a certain value. The results appear to depend 
on the parameter p ,  the effect of the combined action of the gravity and the local 
bed slope upon the bed-load transport. It was found that, for p = 3.2 (an average 
value for p), no ripples will exist when the grain Reynolds number du,/v is above 
23. It was also found that, for the range covered by p, ripples will not occur when 
the grain Reynolds number exceeds 1&26, depending on p. These results were found 
to compare remarkably well with observations. 

Although the preferred initial wavelengths are found to be an order of magnitude 
too small for observed, fully developed ripples (owing to the fact that  the present 
theory is linear, and furthermore does not take into account the flow separation at 
the crests of ripples), the present work implies that the ripple length non- 
dimensionalized by v/u, is a function of the grain Reynolds number du,/v, in contrast 
with the generally accepted assumption that the ripple length scales with grain size. 
The other implication of the present work is that  the ripple length increases with grain 
size. These findings appear to be in qualitative agreement with recent observations. 
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